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In this paper we have obtained a precise error estimate concerning deficient dis-
crete cubic spline interpolant matching with the given function at the intermediate
points between successive mesh points. � 1996 Academic Press, Inc.

1. Introduction

Discrete splines have been introduced by Mangasarian and Schumaker
[6] in connection with certain studies of minimization problems involving
differences. Existence, uniqueness, and convergence properties of discrete
cubic spline interpolant matching the given function at mesh points have
been studied by Lyche [5] which have been further generalised by Dikshit
and Powar [3] and Dikshit and Rana [4] for intermediate points of inter-
polation. It has been observed that deficient cubic splines are more
applicable than usual splines as they require less continuity requirement at
the mesh points. It has been observed by Boneva, Kendall, and Stefanov
[2] that the local behavior of the derivative of a cubic spline interpolator
is sometimes used to smooth a histogram which has been estimated in [8].
An asymptotically precise estimate of the difference between the discrete
cubic spline interpolant and the function interpolated does not seem to be
immediately available. In this connection Rana [7] has obtained a precise
estimate concerning the discrete cubic spline interpolating the given func-
tion at the mesh points. In the present paper we obtain a similar precise
estimate concerning the deficient discrete cubic spline interpolant matching
the given function at two intermediate points between successive mesh
points.
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2. Existence and Uniqueness

Let P: 0=x0<x1< } } } <xn=1 be a uniform partition of [0, 1] such
that xi&xi&1=1�n for i=1, 2, ..., n. For a given h>0 suppose a real con-
tinuous function s(x, h) defined over [0, 1] and its restriction to [xi&1 , xi]
is a polynomial si of degree 3 or less for i=1, 2, ..., n. Then s(x, h) defines
a deficient discrete cubic spline if

D[ j]
h si (xi , h)=D[ j]

h si+1(xi , h), j=0, 1, (2.1)

where for any function f and some h>0, the central difference operator Dh

is defined by

D[0]
h f (x)=f (x), D[1]

h f (x)=( f (x+h)&f (x&h))�2h,

D[2]
h f (x)=( f (x+h)&2f (x)+f (x&h))�h2.

S(3, P, h) denotes the class of all discrete deficient cubic splines which
satisfies the periodicity condition

D[ j]
h s(x0 , h)=D[ j]

h s(xn , h); j=0, 1, 2. (2.2)

Considering the following interpolatory conditions for a given function f,

s(:i)=f (:i); :i=xi&1+1�3n, i=1, ..., n&1, (2.3)

s(;i)=f (;i); ;i=xi&1+2�3n, i=1, ..., n&1, (2.4)

we shall prove the following.

Theorem 2.1. Let f be 1-periodic. Then for any h>0 there exists a
unique 1-periodic deficient discrete cubic spline s in the class S(3, P, h), which
satisfies interpolatory conditions (2.3) and (2.4).

Proof. Suppose in the interval [xi&1, xi], for all i,

s(x, h)=AQi&1(x)&BQi (x)+CQi (x, :)&DQi&1(x, ;), (2.5)

where

Qi (x)=(x&xi&1)(x&:i)(x&;i), Qi (x, :)=(x&xi&1)(x&:i)
2,

Qi&1(x)=(x&xi)(x&:i)(x&;i), Qi&1(x, ;)=(x&xi)(x&;i)
2.

Now using (2.3)�(2.4) in (2.5), we determine constants C and D given by

C=27n3f (;i)�2; D=27n3f (:i)�2
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and setting D[1]
h s(xi , h)=mi (h)=mi , say for all i, we have

mi=g(2) A&g(11) B+((g(16) f (;i)&g(1) f (:i))(27�2) n3, (2.6)

mi&1=g(11) A&g(2) B+((g(1) f (;i)&g(16) f (:i))(27�2) n3, (2.7)

where for any real a, g(a)=h2+a�9n2. Solving (2.6) and (2.7) for A, B and
writing g*(a)=h2+g(a), d(a)=g(a)�g*(13), we substitute these values,
along with the values of C and D in (2.5), to get

s(x, h)=n2[miyi+mi&1y1
i + 9

2n( f (;i) Yi&f (:i) Y1
i )], (2.8)

where yi=Qi (x)&d(2)[Qi (x)+Qi&1(x)], Yi=[d*(7)[Qi (x)+Qi&1(x)]&
5Qi (x)+3Qi (x, :)] and d*(a)=g*(a)�g*(13). Y1

i and y1
i are respectively

obtained from the expressions of Yi and yi by interchanging Qi (x) with
Qi&1(x) and Qi (x, :) with Qi&1(x, ;).

Now using the continuity condition (2.1) with j=0, we have

&
d(2)

2
mi+1+(1&d(2)) mi&

d(2)
2

mi&1=Fi , i=1, 2, ..., n&1, (2.9)

where Fi =(9n�4)[( f (:i+1) & f (;i))+d*(7)[( f (:i)& f (;i)) +( f (:i+1) &
f (;i+1))]].

Existence and uniqueness of s(x, h) depend on the existence of a unique
solution of the set of Eq. (2.9) in mi . It is easy to observe that in (2.9)
absolute value of the coefficient of mi dominates over the sum of the abso-
lute values of the coefficients of mi+1 and mi&1. Thus, the coefficient
matrix of system of Eq. (2.9) is diagonally dominant and hence invertible.

3. Estimation of the Inverse of the Coefficient Matrix

Ahlberg, Nilson, and Walsh [1] have estimated precisely the inverse of
the coefficient matrix appearing in the studies concerning continuous cubic
spline interpolant matching the given function at the mesh points. We
propose to obtain here a precise estimate for the inverse of the coefficient
matrix of the system of Eq. (2.9) by using the approach studied in [1]. It
may be mentioned that this method permits the immediate application to
the spline in standard problems of numerical analysis (see [1]). Without
loss of generality, we assume for the rest of this paper that the deficient
discrete cubic spline s(x, h) under consideration satisfies the condition
D[1]

h s(x0 , h)=0. Now we write the system of Eq. (2.9) in the form

AM=F, (2.10)
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where M and F are column vectors [m1 , ..., mn&1] and [F1 , ..., Fn&1],
respectively, and the square matrix A is of order n&1.

Now in order to find the inverse of the coefficient matrix A, we define
matrix Dn(:, ;) of order n as

Dn (:, ;)=

2; : 0 0 0 0

,

: 2; : 0 0 0

0 : 2; 0 0 0

} } } } } }

} } } } } }

} } } } } }

0 0 0 : 2; :

0 0 0 0 : 2;

where : and ; are real numbers. It may be observed that the determinant
|Dn | satisfies the difference equation

|Dn(:, ;)|=2; |Dn&1(:, ;)|&:2 |Dn&2(:, ;)| (3.1)

with |D0(:, ;)|=1, |D1(:, ;)|=2;, and

2% |Dn(:, ;)|=(;+%)n+1&(;&%)n+1 (3.2)

with %=(;2&:2)1�2.
Further, in view of the above relations (3.1) and (3.2), it may be seen

easily that

2t&n(;+:2r) |Dn(:, ;)|=2;(1&(r:)2n)+:2r(1&(r:)2n&2), (3.3)

where

r=&(1�t)= &
(;&(;2&:2)1�2)

:2 .

Taking 2;=(1&d(2)) and :=&d(2)�2 in |Dn(:, ;)| we see from (3.1) that
the determinant of the coefficient matrix A of (2.10) satisfies the difference
equation

|A|=2; |Dn&2(:, ;)|&:2 |Dn&3(:, ;)|. (3.4)

Thus, it follows from (3.3) that

2t2&n(;+:2r) |A|=(2;+:2r)2&:2(1+2;r)2 (:r)2(n&3). (3.5)
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Now putting 2;=(1&d(2)) and := &d(2)�2 in (3.5), we can get the
elements aij of A&1 from the cofactors of the transpose matrix A. Thus, for
0<i�j�n&2 (or i=j=0; cf. [1, pp. 35�38])

((1&d(2))+r)(1&r2n)(aij)=r j&i(1&r2i+2)(1&r2(n&1&j)),

\(1&d(2))+
r
2+ (1&r2n)(ain&2)=rn&i&2(1&r2(i+1)) for 0<i�n&2,

\(1&d(2))+
r
2+ (1&r2n)(a0j)=r j (1&r2(n&j&1)) for 0<j<n&2,

\(1&d(2))+
r
2+

2

(1&r2n)(a0n&2)=rn&2((1&d(2))+r).

Clearly A is symmetric; therefore A&1 is also symmetric. Now consider-
ing a fixed value of x such that 0<x<1, it may be seen easily that for
fixed =>0 and =<i�n, j�n<1&=, the elements aij of A&1 may be
approximated asymptotically by r | j&i |�((1&d(2))+r). Further, it can be
found in [8] that

:
i

r | j&i |

((1&d(2))+r)
=

(1+r)
(1&r)((1&d(2))+r)

,

where

r=\ 2
(d(2))2+ [(1&2d(2))1�2&d(11)].

Theorem 3.1. For a fixed =>0 and =<i�n, j�n<1&=, the coefficient
matrix A of (2.10) is invertible and the elements aij of A&1 can be
approximated asymptotically by r | j&i |�((1&d(2))+r) and the row max
norm of its inverse, that is,

&A&1&�
(1+r)

(1&r)((1&d(2))+r)
=: K1 ,

where

r=\ 2
(d(2))2+ [(1&2d(2))1�2&d(11)]. (3.6)

Remark 3.1. In studies concerning discrete splines smaller values of h
have special significance for the simple reason that discrete splines reduce
to continuous splines as h � 0. It is interesting to note that the estimate
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(3.6) is sharper than that obtained in terms of the infimum of the excess of
the absolute value of the leading diagonal element over the sum of the
absolute values of other elements in each row.

For the latter of these it gives

&A&1&�3, (3.7)

and a simple computation shows that

3>K1 .

4. Error Bounds

In this section, we shall obtain the error bounds for the deficient discrete
cubic spline interpolant, i.e., e=f&s over the discrete interval [0, 1]h

which is defined by [0, 1]h=[0, 1] & Rh , where Rh=[x0+jh: j is an
integer].

In order to show the convergence of the discrete spline, we observe that
we do not require any smoothness condition on the function, as is required
in the continuous spline case.

We shall need the following Lemma due to Lyche [5].

Lemma 4.1. Let [aj]m
j=1 and [bj]n

j=1 be given sequences of nonnegative
real numbers such that �m

j=1 aj=�n
j=1 bj ; then for any real valued function

f, defined on a discrete interval [0, 1]h , we have

} :
m

j=1

aj[xj0 , xj1 , ..., xjk] f& :
n

j=1

bj[ yj0 , yj1 , ..., yjk] f }
�W(D[k]

h f, |1&kh| ) :
aj

k!
,

where xjk , yjk # [0, 1]h for relevant values of j, k.

Replacing mi by D[1]
h e(xi) in Eq. (2.8) we have

e(x)=n2[ yi D[1]
h e(xi)+y1

i D[1]
h e(xi&1)&Ti ( f )], (4.1)

where Ti ( f )=[ yiD[1]
h f (xi)+y1

i D[1]
h f (xi&1)+(9n�2)( f (;i) Yi&f (:i) Y1

i )&
f (x)�n2].
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In order to find the bound of f (x)&s(x), first we estimate |Ti ( f )|,
writing it in the form

|Ti ( f )|= } :
3

j=1

aj[xj0 , xj1] f& :
4

j=1

bj[ yj0 , yj1] f } ,
where a1=Qi&1(x), a2=3

2((d*(7)(a1+a3))+n&1(xi&x)(x&;i)), a3=Qi (x),
and b1=b4=d(2)(a1+a3), b2=3a1 , b3=(x&;i)�n2, x10=y10=xi&1&h,
x11=y11=xi&1+h, x20=y20=:i=xi&1+1�3n, x21=y21=;i=xi&1+
2�3n=y40 , y41=x, x30=y30=xi&h, and x31=y31=xi+h.

It can be seen easily that 7aj=7bj . Therefore, applying Lemma 4.1 for
n=3, m=4, and k=1, we get

|Ti ( f )|�K2W(D[1]
h f, 1�n), (4.2)

where K2=(n&3�1125)[8[3d(0)+d*(37)]&75].
We now proceed to obtain an upper bound for D[1]

h e(xi). Replacing mi

by D[1]
h e(xi) in Eq. (2.10), we have

A(D[1]
h e(xi))=A(D[1]

h f (xi))&(Fi)=: (Hi), i=1, 2, ..., n&1. (4.3)

Again, observe that (Hi) has the form

} :
3

j=1

aj[xj0 , xj1] f& :
3

j=1

bj[ yj0 , yj1] f } ,
where a1=d(11), a2=a3=(3�4) d*(7), b2=3�2, b1=b3=d(2)�2, x10=
xi&h, x11=xi+h, y10=xi&1&h, y11=xi&1+h, x20=:i=xi&1+1�3n,
y20=;i=xi&1+2�3n=x21 , y21=:i+1=xi+1�3n=x30 , y30=xi+1&h,
y31=xi+1+h, x31=;i+1=xi+2�3n.

Clearly 7aj=7bj ; thus by using Lemma 4.1 again, we get

|(Hi)|�K3W(D[1]
h f, 1�n), (4.4)

where

K3=
3(72h2+43�n2)
2(18h2+13�n2)

.

Thus, using Eqs. (4.3)�(4.4) and (3.6), we get

&(D[1]
h e(xi))&�K4W(D[1]

h f, 1�n), (4.5)
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where K4=K1 K3 and, finally, using the bounds of (4.2) and (4.5) in (4.1),
we have

&e(x)&�n&1K(h) W(D[1]
h f, 1�n),

where K(h)=((1&2d(2)) M+K2), with M=(4�1125) K4 . Thus we have
proved the following.

Theorem 4.1. Suppose s(x, h) is the 1-periodic deficient discrete cubic
spline interpolant of Theorem 2.1. Then over the discrete interval [0, 1]h

&e(x)&�n&1K(h) W(D[1]
h f, 1�n), (4.6)

where K(h) is some function of h defined earlier and W( f, 1�n) is the discrete
modulus of the continuity of f.
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